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MODELING OF THE STRUCTURE OF A BULK LAYER
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The characteristics of porous layers of a dispersed material have been investigated by the method of computer
modeling. A linear growth in the porosity with increase in the adhesive force has been revealed. The statisti-
cal distribution functions of the size of pores and their shape have been computed and analyzed for different
values of the adhesion forces. The distinctive features of the orientation of pores for different adhesive forces
have been noted.

In technical practice, the layers of a dispersed material are formed almost without exception in the course of
the processes of charging, settling, or filtration of a suspension that are statistical in nature. Thus, the layer structure
is randomness-dependent and must be described by means of probability theory. One can only make statements on cer-
tain characteristics of the average state of the layer, for example, the layer porosity.

The experiments show that, for fairly large particles of a definite shape (for example, spheres), the volume
porosity εv is, on the average, a constant in the case of satisfaction of certain conditions for the dimensions of the
layer: the height of the layer is not too large so that the gravity force does not cause its compression by forcing par-
ticles into the layer matrix; compaction in formation of the layer is minimum; the dimensions of the layer are large as
compared to the particle size. The fact that the volume porosity of the layers formed from particles is in the interval
0.36–0.44 even for the most elementary geometric particles demonstrates that these conditions are difficult to control
[1–5].

Porosity, though undeniably the most important characteristic of the layer structure, which finally determines
the hydraulic resistance to the liquid flow through the layer, is not the only quantity of interest. The pore size and
shape are also important characteristics, particularly for problems of catalysis and chemical engineering [4–6]. All these
characteristics are difficult to theoretically predict. Significant results have recently been obtained in the works of A.
P. Mozhaev [7, 8].

Additional difficulties are presented by the fact that physical effects and primarily the force of cohesion be-
tween particles, which grows in importance as their size decreases, play a large role in organization of the structure
apart from the geometric factors (particle size and shape) [4, 5]. Thus, for glass spheres, the measured values of vol-
ume porosity increase from 0.4 to 0.8 as the particle size changes from 160 to 10 µm. Other examples of the influ-
ence of the forces of interaction of particles are the dependence of the sediment density on the layer height, the
particle size, and the chemical composition of the liquid phase and the dependence of the filtered layer of a solid ma-
terial on the pressure difference in a filter flow [9–12].

To illustrate the process of formation of the structure of a bulk layer from spheres it is more convenient to
consider a two-dimensional analog — coverage of a plane surface with circles. Such a formulation makes it possible
to determine the surface porosity εs. We note that the circles are considered here as projections of spheres lying on
the plane. The centers of the spheres are equidistant from the projection plane (within the distance of their radius).
Such a consideration differs from the regular formulation [6, 7] in which one analyzes the porosity of a charge of an

Journal of Engineering Physics and Thermophysics, Vol. 78, No. 2, 2005

aErlangen-Nuremberg University, D-91052, Erlangen, Germany; email: Johann.dueck@uvt.cbi.uni-erlangen.de;
bObninsk State Technical University of Atomic Power Engineering, Obninsk, Russia; email: seb@obninsk.ru. Trans-
lated from Inzhenerno-Fizicheskii Zhurnal, Vol. 78, No. 2, pp. 36–43, March–April, 2005. Original article submitted
February 23, 2004.

1062-0125/05/7802-0239  2005 Springer Science+Business Media, Inc. 239



arbitrary section on the plane. In this case, circles of different diameter will be found on the cut plane by virtue of
the random arrangement of the spheres.

A relationship between εs and εv can be established in the following manner. Let a cube with a side equal to
unity be filled with spheres of radius R << 1. The packing will be considered to be random. If the number of spheres
in the cube is Ns, the volume porosity will be considered as

εv = 1 − 
4
3

 πR
3
Ns . (1)

We mentally arrange these spheres uniformly at a constant distance between the centers of neighboring
spheres 2L, so that

4
3

 πL
3
Ns = 1 . (2)

Let us pass a section parallel to one plane of the cube. On the surface of such a section, there are Ns spheres.
The distance between the centers of two neighboring spheres is equal to 2L; we have

πL
2
Ns = 1 . (3)

The surface porosity will be found as

εs = 1 − πR
2
Ns . (4)

Expressions (2) and (3) yield

Ns = 
4
3

 LNv . (5)

Then (4) will be written in the form

εs = 1 − 
4
3

 πR
2
LNv . (6)

From (1) and (6), we obtain

1 − εv

1 − εs
 = 

R

L
 . (7)

Considering now one sphere of radius R in the spherical volume of radius L, we have

1 − εv = 


R
L





3

 . (8)

From (7) and (8), we obtain the final expression

εv = 1 − (1 − εs)
3 ⁄ 2 . (9)

Formula (9) has been obtained not in an exactly rigorous manner. In particular, it is easy to note that spheri-
cal volumes of radius L partially fill the cube and the circles of radius L do not cover the entire section selected. This
circumstance is equally disregarded in the normalization equalities (2) and (3), which leads to a compensation in
equality (5). According to formula (9), the limiting impracticable cases of absolutely close (εv → 0 simultaneously with
εs → 0) and absolutely loose (εv → 1 and εs → 1) packings are fulfilled. When the construction is different, we obtain
dependences analogous to (9) in structure but with a certain factor of (1 − εs)

3 ⁄ 2. For example, when cubes are used
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instead of the spherical volumes in (2) and (3), this coefficient is equal to 0.75. The limiting transition εv → 0 for
εs → 0 is absent. The curve of εv as a function of εs in accordance with (9) is shown in Fig. 1, where the portion of
practical interest is shown by the semiheavy line. The straight line εv = εs demonstrates the equality of the volume
and surface porosities [3, 4, 6] in the arbitrary section of the charge.

The derivation of (9) assumes the uniformity and isotropy of the packing in the statistical meaning, i.e., the
constancy of the characteristics of the packing on scales much larger than the sphere size. This property, as will be
shown, may not be filled if the adhesive force acts between the particles. The monodispersity of spheres adopted in
derivation is another important property. The subsequent consideration is restricted to this case.

The two-dimensional picture reflects, if not completely, the layer structure in a three-dimensional repre-
sentation, much as the representations of the layer structure follows from an analysis of the picture of the layer sec-
tions.

In what follows, we will describe the algorithm of the program and the results of computer modeling.
Algorithm. The imitation system consists of a square with a side equal to unity and a set of equally large

circles of prescribed diameter that are characterized by their position in the cube. The circles fall singly in the square
until they hit the lower side of the cube (at the beginning of filling of the square) or the surface of the layer already
formed. The circles once stopped cannot be set in motion. The coordinate of the origin of a falling circle is (x, 1),
where x is a random uniformly distributed quantity between 0 and 1 (Fig. 2). The coordinate of a freely falling circle
is y = vyt, where the rate of fall vy (it is implied that the fall occurs by the action of the mass force, just as in sedi-
mentation) is selected together with the time step ∆t such that the inequality vy∆t << 1 is fulfilled and a certain calcu-
lation accuracy is ensured.

Fig. 1. Relationship between the surface and volume porosities.

Fig. 2. Modeled situation.
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If the circle comes against an obstacle in its motion, its trajectory is corrected in a certain manner (Fig. 3).
Let the moving circle have a momentum mv before its contact with an immobile circle. Upon collision, it acquires the
momentum –m v  cos α along the line of centers of the two circles in the direction from the center of the circle at
rest and continues its motion in the direction of the vector that is a result of the summation of the vectors v and v
cos α, as is shown in Fig. 3. The forces of cohesion between the circles F are assumed to begin to act at the instant
of contact of the two circles in question. For the moving circle to separate from the circle at rest the momentum ac-
quired by the moving circle must overcome this force, i.e., the condition

kad = 
 F  ∆t

m  v
(10)

must be satisfied.
For a prescribed cohesion force and parameters of motion of a particle this relation determines the limiting

value of the slip angle required for further motion of the circle. We call kad = cos α the adhesion parameter of the
dimensionless coefficient of cohesion. In the course of computer experiments, we can vary the value of cos α itself
directly, thus changing the relation between the cohesion force and the momentum of the particle.

If it crosses the region that is already occupied by the circles settled earlier after the described correction of
the circle’s trajectory, this means that the motion of the circle ceases and the circle in question is involved in the com-
munity of the settled circles. Thereafter the next circle is set in motion on the upper side of the square. The process
continues until the entire square is filled.

The program realizing the algorithm described has been composed in the C Builder 5.0 (C++) language.
Quantities Computed. 1. Porosity. The porosity has been calculated by subtraction of the area of all the cir-

cles filling the square from the area of the square itself.
2. Computation of the Laws of Statistical Distribution of the Parameters of Pores. In establishing the laws

of statistical distribution of the parameters of pores, we must primarily identify each pore. For this purpose we con-

Fig. 3. Motion of a circle upon contact with the circle already settled.

Fig. 4. Layer structures made of circles and formed for different values of the
dimensionless adhesion coefficient: a) kad = 0 and b) 0.5.
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struct a plane graph connecting the centers of the contacting circles. Then we carry out the following procedure: we
take one node of the graph (center of one circle) and, beginning with the last node on the right, trace counterclock-
wise from one node to another continuously until we meet the starting node. This means that the boundary is traced
and the pore is determined. The nodes making up the boundary checked are eliminated from the number of selected
nodes as the starting ones for the next tracings. For control we repeat the same procedure with change in the direction
of tracing, then we take the next possible node, etc. We include in the statistics only the internal pores, i.e., those not
having any side of a rectangle as one of its boundaries.

(1) The perimeter of the pores is computed by summation of the lengths of all the straight lines that connect
the centers of particles forming a pore. This procedure yields a result somewhat differing from the true value of the
perimeter but considerably simplifies the computation. For a symmetric pore from six circles of radius R, the program
will compute a value of 12R (instead of the true value equal to 4πR). Such an accuracy is considered to be satisfac-
tory.

(2) The pore area is computed by subdivision of the area of a polygon formed by the straight lines of the
graph into triangles whose area is computed based on the lengths of two sides and the angle between them. If any
interior angle of the graph is larger than π, for this angle a triangle from the sides is eliminated from consideration of
the pore area.

(3) The parameter of the pore shape is computed based on the following determination: Sh = 2√πS /P. For a
circle we have Sh = 1.

Computation Results. The statistics of distribution of the characteristics of pores has been established in a
twofold manner. First, we processed all the pores resulting from the realization of filling of the square; second, we
carried out a fairly large number of realizations. The number of the necessary realizations was established from the re-
quirement that the statistical straggling (confidence interval with a probability of 95%) be no higher than 2 to 3%.
Computer experiments show that the number of necessary realizations depends on the coefficient of adhesion of parti-
cles: the sufficient number of replications of the experiment is no larger than 50 for kad = 0 and increases to 100 for
kad = 0.5 or higher.

Another important parameter is the particle size. It must be fairly small as compared to the square length,
equal to unity. Experience shows that, for particles with a radius smaller than 0.025, further decrease in the particle
size does not cause the statistical characteristics of the layer to change. It is precisely with these adjusting parameters
that the calculations have been performed.

Figure 4 gives examples of a random arrangement of circles in the square for two values of the adhesion co-
efficient. The packing of circles is closer for kad = 0 than that for kad = 0.5. Porosity increases with the force of co-
hesion between particles. The dependence of the porosity on kad is shown in Fig. 5.

The quantity kad influences not only the porosity but also other characteristics of the layer structure. Figure 6
compares the distribution histograms of the number of joints n (it is equal to the number of circles forming the pore),
the shape factor of the pore Sh, and the reduced area of the pores. These results demonstrate that the distributions of
different parameters are much more diffuse in the layer with mutually cohesive particles than in the case of adhesion-
neutral particles.

Fig. 5. Values of the surface (1) and volume (2) porosity vs. adhesion parameter.
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Discussion of the Computation Results. Certain characteristics of the simplest pores are given in Table 1 for
analysis of the results of computer modeling. The graphs of the given pores are regular polygons. Consequently, we
can classify the pores as regular or ideal ones. Pores of such kind can be found in a sufficient number in the layer
structure for kad = 0. Pores formed by three circles correspond to the packing with εs = 0.1. The area of an individual
pore in relation to the area of a circle (normalized area) is only 0.05. A square (or cubic in three-dimensional repre-
sentation) packing has εs = 0.21 and a normalized area of 0.27. The probability of a hexagonal packing (case kad = 0)
must be very low, since the pore area in this case exceeds the circle area more than twice. Accordingly we have εs =
0.7 in such a packing. The shape factor grows in such ideal pores (it is equal to unity in the limit) with the number
of particles.

The modeling shows the presence of a small number of pores formed by six circles (approximately 6% of
their total number for the case kad = 0 and 12% for kad = 0.5) or even by seven circles (of the order of 2% of the
total number for kad = 0 and of 8% for kad = 0.5). Consideration of the pictures of different realizations (for example,
in Fig. 4) shows that these pores are far from regular ones in shape. They are often curved or extended along the di-
rection of fall of the circles (y axis). A rectangle with sides a and b with the shape index

Sh = √π  
√ b ⁄ a

1 + b ⁄ a

would be an appropriate geometric shape for such pores.
We have Sh → 0 in the case of strongly extended pores when b ⁄ a → 0 or b ⁄ a → ∞. Therefore, it is not sur-

prising that the shape factor for kad = 0.5 is virtually equally frequent in the range between 0 and 1.1. For the case
kad = 0 the shape factor is mainly concentrated in the region between 0.7 and 1.1.

Mutually cohesive circles are characterized by the possibility of forming pores from a large number of circles,
up to 12. The maximum number of pores is formed from five particles, whatever the value of the coefficient kad is.
The value of the porosity is virtually in proportion to kad (see Fig. 5). An increase in the porosity with adhesive force
is a well-known fact embodied in the theory and practice of flocculation. This effect has been investigated theoretically
and experimentally from the viewpoint of the structure of filter beds and cakes [7–10].

For adhesion-neutral particles, we have εs = 0.28. Based on formula (9), this corresponds to a value of εv =
0.39 lying between the bounds of the measured values of volume porosity. The porosity values for other values of the
coefficients kad have been computed from formula (9) and are given in Fig. 5.

The quantity kad also has an effect on the distribution of the pore areas (Fig. 6). The maximum number of
the pores (32%) has an area equal to 0.25πR2 if kad = 0, and one-third of all the pores (also the maximum number)

TABLE 1. Characteristics of Certain Ideal Pores
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has an area equal to 0.86πR2 for kad = 0.5. The distribution of the pore areas becomes wider with increase in kad. Fig-
ure 7 shows the distribution functions of the normalized pore areas Ds and the parameters of shape Dsh that have been
composed based on the histograms of Fig. 6. In considering these distributions, we are interested in the following de-
tails:

1. The lower bound of the normalized pore areas is finite, i.e., the domain of definition of the distribution
function is bounded on the left not by zero. The larger kad, the higher the lower value of a possible pore area. An
analogous remark is also true for the maximum possible area. We observed no pores of area larger than 3.64πR2 for
kad = 0 and larger than 12.57πR2 for kad = 0.5.

2. The value Ds = 50% for the case kad = 0 is attained when S = 0.31πR2 and for kad = 0.5 when S =
πR2. Thus, the higher the adhesive force, the larger the average pore size. The distribution width can be determined
by the relation of the values of the argument for Ds = 75 and 25%. It is approximately equal to 2.5 for kad = 0 and
nearly to 6.4 for kad = 0.5.

3. The shape factors have nearly equal values (Sh = 0.1 for kad = 0 and Sh = 0.06 for kad = 0.5) as their
lower bound, but the probability that such low values will be attained by mutually cohesive circles is higher than that
for adhesion-neutral ones. The shape factor Sh for the case kad = 0 does not exceed a value of 1.2, and values up to
Sh = 1.6 are observed for kad = 0.5.

4. For kad = 0, the values of the factor Sh are concentrated in the vicinity of F0.75 (here the value for which
Dsh = 50% is attained), whereas for kad = 0.5 the distribution function is almost straight. This means that the shape

Fig. 6. Distribution histograms of different parameters: a) kad = 0 and b) 0.5.
The fraction of pores of a given form is plotted on the vertical axis in percent.
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factors in the interval between 0.06 and 0.75 are nearly equally probable in this case. The value Dsh = 50% is attained
when Sh = 0.5. Just as above, the distribution width for Dsh can be determined by the relation of the argument values
for Dsh = 75 and 25%. It will be equal to 1.33 for kad = 0 and will increase to 3.75 for kad = 0.5. These indices
reflect the apparent fact that pores are farther from a circle in shape in the case of mutually cohesive circles than
those in the case of noninteracting circles.

Many of the observations made here for a plane layer of circles are undeniably true for three-dimensional ran-
dom packings, e.g., the volume porosity as a function of the adhesive force is a well-established fact correlating with
the computer experiment presented, which needs to be extended to the three-dimensional case. Another line of inves-
tigation would be inclusion of the external influences on the layer — shaking, gravity, and others — into considera-
tion.

CONCLUSIONS

1. We have developed and realized the method of computer modeling of random packings with allowance for
the forces of cohesion between particles.

2. We have found the relationship between the surface and volume porosities.
3. It has been established that the porosity grows nearly in proportion to the adhesive force.
4. It has been shown that, when the adhesive force is large, pores acquire the shape of polygons extended in

the direction of motion of particles.
5. We have found the statistical distribution functions of different characteristics of the pores.
6. It has been found that the distribution grows with adhesion force.

NOTATION

a and b, sides of the rectangle, m; Ds, distribution functions of the normalized pore areas, %; Dsh, distribution
functions of the shape factors, %; F, vector of the adhesive force, N; kad, adhesion coefficient; L, half-distance be-
tween the centers of two neighboring spheres, m; m, mass of a circle, kg; n, number of pore nodes; Ns, number of
spheres in the section; Nv, number of spheres in the cube; P, perimeter of a pore, m; R, radius of spheres or circles,
m; S, pore area, m2; Sh, parameter of the pore shape; t, time, sec; ∆t, time step, sec; v, velocity vector, m⋅sec−1; vy,
component of the velocity vector along the y axis, m⋅sec−1; x, y, coordinates in the square, m; α, slip angle, rad; εv,
volume porosity; εs, surface porosity. Subscripts: ad, adhesive; s, surface; sh, shape; v, volume.

Fig. 7. Distribution functions of the relative pore areas (a) and the parameter
of the pore shape (b): 1) kad = 0 and 2) 0.5.
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